P1: RISC-V

Jack Ryan (jpr254)
March 6, 2024

1 Overview

The circuit shown in the block diagram below is a single-cycle RISC-V
processor. This processor has been designed to accept instructions from the
following table and execute them according to the RISC-V instruction set
architecture. The block diagram breaks the main circuit into the five stages
of the RISC pipeline, each of which will be explained in further detail.

RIsCV

Register
Execute
s Memory writeback

=< -

DecodeType ﬁ;
|' t

2 Fetch

The RISC-V pipeline starts with fetch. This is the step where the next
32-bit instruction is grabbed and decoded. Fetch uses a one-bit incremented,
a register, and the program ROM. Since all instructions are 32-bit (four

Format Instructions

R-type | ADD, SUB, AND, SLT, SLL, SRA
I-type ADDI, ANDI, LW, LB
S-type SW, SB

U-type LUI

B-type BEQ

bytes), the program counter must always be a multiple of four bytes. To
increment by multiples of four a splitter is used to break off the two least
significant bits. The remaining 30 bits are incremented by one and then
another splitter joins the bits back together. Due to how binary numbers
work, this has the effect of incrementing by four instead of one. Since our
processor handles a branch instruction, it is also possible that we want to
jump forward or backward more than four bits instead of continuing linearly
through the instructions in the program ROM. When a B-type instruction
is decoded (discussed more in Section 2) and a jump is required, a control
signal is sent a mux. This mux outputs PC + 4 when the signal is 0,
and PC 4 imm when the signal is 1. The current program counter is sent
to the program ROM, which outputs an instruction. There are no added
subcircuits for this step, all discussed functionality can be observed in the
block diagram.

3 Decode

The second step in the pipeline, decode, is also the most complex. My
implementation includes a 32-bit wide by 32-registers deep register file, along
with a multitude of subcircuits to decode the instruction given by program
ROM in fetch. The instruction is first passed into Decodelnstruction.

Decodelnstruction takes in a 32-bit instruction and splits it into fields
(funct7, funct3, r2, r1, rd, imm) according to the type and specific function
in the case of I-type. For any given type, not all of these fields will be used.
In these cases, the unused fields are zeroed out so as not to access any un-
expected registers and/or perform computations on unexpected values. The
first step in decoding the instruction is to figure out what type of instruction
we are dealing with. To avoid having subcircuits with an individual input
for each type I chose to encode the type into a single 3-bit input.

The below table describes the encoding done by EncodeType. Each type
of instruction has a unique 7-bit opcode (the seven least significant bits).
By identifying unique patterns in each opcode (highlighted in red), these are

Decodelnstruction - - . . R

EncodeType DecodeRType . o . .
inst instOut Inst funct? 1 0000000, >fu ct?7
instType - - rs2 .
— . f'unfs‘* : “SelectFunetd | - . o
S o @nstres - e functs- L
. . 3 . : .
B ‘DecodelType Y
@ inst: imr - - - .
. e - SelectR2 -
K - tType 2 00000
....... ! : | Qpuemee 21 00000072
- 5 . .
- b5
DecodeSType . .
@ inst imr - SelectR1 -~ - -
- rs2 - - -
- . rsi o @instType - oorl 00000, 0p] - -
func I e T ee——s
E . . 5 ol
. s
....... — - b5
DecodeUType . - . A
@pinst . imm L bV Ml selectrd -}
: . { 2 instType - 00000, re
. 5 .
us
DecodeBType 5000000
= nst. imr -
o . rs2 - 00000000 E
..... L B . rsl . bt NSt Type- s o B . . i
funct3 e 52, - ooooongg (MM
532
ud2. .. .00000000
..... L . — 20, . . - -
: 00 1n>instType

R -~ - EncodeType T o\ -
) o) o)) A "V oooooooo X -
_ sooo000e \ . —_— = 50000000 JiNStOuUt
inst| 9ee66066 1 S ETTITTITN A
M@@@@@@] N) L

used to figure out what instruction the circuit is dealing with and encode it
accordingly. EncodeType takes in a 32-bit instruction and outputs a 3-bit
representation of the type, as well as the original instruction minus the seven
least significant bits for the type opcode.

Once the type is known, the circuit must split up the instruction accord-
ing to the RISC-V ISA. Decodelnstruction sends the now 25-bit instruction
into a decoding subcircuit for each of the five types. These decoders will
split, join, and extend the given instruction and output values according
to specifications. The next step is to select the correct values for each of
the possible fields (funct7, funct3, r2, rl, rd, imm), dependent on the type.
Other than function7, which exists in every type this processor deals with,
Decodelnstruction needs to select the correct fields according to their type.
If a given type uses a field, say r2 for R-type, it will be outputted by Se-
lectR2 correctly. If a field is not used it is zeroed out, as discussed earlier.
At this point, the instruction is separated into the correct fields, which are
outputted along with the instruction type for ease of use. (To limit total
page size DecodeXType and SelectX are not pictured, know that they are
relatively simple and can be understood based on the RISC-V ISA)

At this point rd, r2, and rl are passed directly into the register. A sub-
circuit, DecodeType, which does the opposite of EncodeType based on the
same table, is used to easily decode the type when needed. Per specification,
writing is enabled for types R, I, and U. Branching off DecodeType is an or
gate that acts as a control signal (RegWrite) to decide when to write data
to the register. Function7, fucntion3, and the type are passed into AluCom-
pControl with acts off the following table to generate an opcode to be used
by the ALU and a control signal to designate when the output of the A <
B from the black-box comparator is used (needed because ALU does not

have access to correct functionality). An intermediate circuit to generate
the 4-bit ALU opcode is necessary because it is not inherently a part of
the instruction. AluCompControl only needs funct3, funct7, and mistype
because as seen in the table, these fields hold enough unique information to
generate the correct ALU opcode. Since at least one of the types (R-type)
uses both funct3 and funct?, they are both needed in AluCompControl. As
can be seen in the table without funct7 there would be an overlap of funct3
values of R-type.

AAAAAAL B88, 0,000,

s insh Tyge L2 fendd opcode _

odd | & [0000000 |o00c 000t [RABBB, O RAPLBR, T 6AR

wh | R |0100000 |ooo |o101 | RABAB,

ard | R | 0000000 |1i1 1111} RABGE, O MABAB. RARSE RAMLe THbb
b | & | ooooooo |oto [Complt| RADRB,

sl | R |oooocoo |oor |00 | RABRE O RAREE RABRE RAMGe THAR
sts | R | o1oooeo [101 |01 [lA_;P)Iﬂ\GO

ol | T 000 [ocor | TBBA O, =T «L+*B

adi | T | —— [tiv || TebR

b | T | —— |oto|— | TR I RARBRE

b | T | ——|oo0|—| 1BAE

w | s | —— |oio|—]| sEbb

sb | S | — |ooo| — | SB,BR

lui v | — | —|= v

beg | B | — o000 [oor| B

The final subcircuit in decode is MemControl. The purpose of Mem-
Control is to recognize addresses that are out of bounds (above OxFFFFF
bytes), to generate the correct value of cs according to specifications when
executing 1b and sb, and to adjust the data to be stored in memory to make
sure it works correctly when executing sb. This adjustment consists of a
shift in bits to make sure the two least significant bytes are always stored in
the correct address. AddrOverflow is 1 when an invalid address is inputted,
else 0.

There are a few more control signals to touch on before finishing up with
decode. The first of which controls when the immediate value is used vs the
value of xB. Per spec know that I, S, U, and B types all use the immediate,
so when any of these types are used the mux signal is 1 and the immediate
value is passed to the ALU. There is also a control for when to use xA vs the
PC. This is necessary to use the ALU to calculate jumps when branching.
As such, when the instruction is of type B this mux has a signal of 1 and

. o ;... ..; . Lo "."ﬁ S o o sooo\ -
777777 R : , -] 00000000 YaddrOUt -
ecoc0ess \. F L 1. . loossoose/ o

addrin| ggoo000e | | | [)— @ Fob—eles

"|ododooad,

X : S S .uuu-uunuu'i'
oL | deeeeeRe. \. oot ® o vt - o~ .. |.cooocoooo \. ..
datain| gopeoene [TIRL @ Ry VR o | soconoag

takes the value of PC, when 0 takes xA. There is a final signal into a mux
that appears in the bottom left of the memory block, but is actually part
of decode. This controls a mux that passes in the output of the ALU when
0, and the 12-bit shifted immediate value when 1 which happens when we
have U-type.

4 Execute

The third stage in the pipeline is Execute. Overall there is little (that
can be seen from this circuit, the ALU itself is complex) happening. The
ALU receives an opcode generated by AluCompControl and a shift amount,
taken from the five least significant bytes of xB. Since the ALU does not
handle less than, there is a mux that takes in the It control signal, also from
AluCompControl. When this signal is 0 the output of the ALU is taken,
when it is 1 the output of the comparator is taken.

5 Memory

Like with Execute, in the Memory stage, there is relatively little going
on that we can see. Here there are a few more control signals to discuss.
MemWrite connects to WE to control when data is written to memory, this
only happens when we have S-type and addrOverflow is not 1. MemRead
connects to OE to control when data is read from memory, this only happens
when we have instruction Iw or lb.

6 Write-back

The final stage, Writeback, controls when data is written back to the
register. The subcircuit ByteSelectControl is used to handle selecting the
correct bytes when Ib is executed according to the value of cs. It also takes
in addrOverflow, which prevents a register out of range from being read.
There is a mux that decides to take the value of execute when 1 or memory
when 0. This signal, MemtoReg, is 1 when R-type, U-type, or I-type but
not Ib or Iw. The output of this mux is sent to the register.

7 Testing

While making this processor I was constantly testing by running my
GDC algorithm and a test file containing a multitude of tests and edge
cases for each instruction. I would run these files on both my circuit and the
RISC-V interpreter and manually compare the results. Most of these edge
cases consisted of doing computations with zero, 1, INT_MAX, or INT_MIN.
Other notable edge cases I checked for were overflow /underflow for any in-
struction that was added or subtracted, and ensuring that memory addresses
out of bounds were not written to or read from. After finishing the processor
I started trying to use a test script. I ran into some problems doing this but
eventually got everything converted. Finally, I added my GDC algorithm to
the test script because it was a great random test for all but four (and, sra,
and, and sb). I added a few random tests for these four, then ran the entire
random test in the interpreter. I took the final values in the registers and
used them as the expected values. Together these tests convinced me that I
had a fully functioning RISC-V processor.

