P1: ALU

Jack Ryan (jpr254)

February 13, 2024

1 Overview

This arithmetic and logic unit (ALU) is designed to perform many of
the main computations required by a computer. This ALU takes in various
inputs, including two 32-bit data inputs and a 4 bit operation code to tell
the ALU which computations to perform. This results in a single 32-bit data
output as well and an overflow indicator for addition/subtraction. The ALU
can compute many operations, including addition, bit shifting, and bitwise
comparison.

2 Component Design Documentation

My ALU has 4 primary subcircuits.
e Add32 - handles addition of two 32-bit two’s complement integers.
e GateControl - computes bitwise comparisons (AND, XOR, OR, NOR).

e Shift32 - handles logical right and left bit shifting, as well as right
arithmetic shifts.

e ComparisionControl - in charge of the following comparisons (==, ! =,
<=, >).
2.1 Operation codes

The ALU works off of the following list of operation codes. All op codes
not on this have undefined functionality

Op name © meaning \%
0010 d C=A&B V=0
an C gets the result of a bitwise and
operation on inputs A and B
0011 or C=A|B . V=0
C gets the result of a bitwise or
operation on inputs A and B
101: hift left logical C=B=<<S V=0
x shitett logica ? C gets the result of a shift left
logical operation on input B
0000 xor C=A"B o V=0
C gets the result of a bitwise xor
operation on inputs A and B
0100 C=~A|B V=0
nor (A1) C gets the result of a
bitwise nor operation on inputs A
and B
0001 hift right logical C=B>>>S; V=0
shittnigntlogica A C gets the result of a shift right
logical operation on input B
1100 hift right arithmeti C=B>>§ V=0
shittright arithmetic ? C gets the result of a shift right
arithmetic operation on input B
0110 ne C=(A'=B)?000...0001 : 000...0000 X V=0
if A!= B, C gets the value
000...0001, else 000...0000
0111 eq C = (A ==B)?000..0001 : 000...0000 . V=0
if A = B, C gets the value
000...0001, else 000...0000
0101 le C=(A<=0)?000..0001 : 000...0000 3 V=0
ifA <0, C gets the value
000...0001, else 000...0000
1101 gt C = (A >0)?000..0001 : 000...0000 . V=0
if A >0, C gets the value
000...0001, else 000...0000
100x subtract C=A-B V = overflow
C gets the result of A- B
111x add C=A+B V = overflow

C gets the result of A+ B

2.2 Design justification

Subcircuits were created to minimize the complexity (especially with
wiring) of any given circuit. In an effort to reduce wiring complexity and
avoid using multiplexers with many inputs, I made the decision to use a
mux after each computation (example below) and then select between the
altered and unaltered input based on the op code. The potential downside
to this is a longer critical path. That being said I did notice that some
operations, notably add/sub, took longer than others, which indicated to
me that each computation was being run fully every time and that this
downside is negligible.

3 Add32

A 32-bit adder that takes two two’s complement inputs and outputs their
sum and a indication of overflow.

,,,,,,,, - = 00000000
N ooooooon

A B Cout [
| sign cin oooooooo
1 Ci

00000000
exten Add16 >

60600000

Kzn) ot m e v
Soa00000
[ololololollol

= COUt fsemy

exten Addd

a5 Cout fuey

=P DA,
extend

Add32

3.1 Implementation Details

In the circuit above A and B are the 32-bit inputs, while Cj, is the
carry-in bit. C' is the output bit, while V' is the overflow indicator. This
circuit uses multiple subcircuits to complete the addition. Add16, AddS,
Add4, and Add2 are all almost identical. The two one-bit adders at the
end are used to determine if overflow has occurred. Together Add16, Add8,
Add4, Add2, Add1, and Add1 combine to add up add the two 32-bit inputs
into one 32-bit output. If C;, is one the values of B are negated using a bit
extender and XOR gate and Cj;, = 1 is passed into the subcircuits. This has
the effect of negating the value of B as a two’s complement integer, which
also means we can use this circuit to compute subtraction.

3.2 Add16 - Add2

Each of these circuits follows a the same pattern. Add2 (shown below)
takes in two two-bit inputs along with a carry-in bit, includes two one-bit
adders, then has a two-bit output and a carry-out bit. Add4 takes in two
four-bit inputs along with a carry-in bit, includes two two-bit address, then
has a four-bit output and a carry-out bit. This recursive pattern continues,
finishing with Add16 which is also shown below (notice it is almost identical

to Add2).

oI

Cout

B[00

cin[0o

70

00000000,

-

Add2

Cout

A

B

==t Cin

S
Cout

) [0o00o00000
Adds —r;-;]" 00000000, S

u2)

L 00000000,

A

B

et Cin

cin[0>

3.3 Add1

S
Cout

——{2>cout

Add3

Add16

Add1 is a one-bit full adder designed to take in two one-bit inputs with
a carry-in input, return the one-bit sum along with a carry-out bit. The
Adder is based off of the following truth table, for which the circuit is opti-

mal.

A| B Czn S Cout
01010 010
010 |1 110
0110 110
0|1 |1 011
11010 110
110 |1 011
11110 011
11 |1 111

il S

Add1

4 GateControl

This circuit handles the AND, XOR, OR, and NOR bitwise logical op-
erations.

oopoooooao
oopoooooao
oooooo0oO0
00000000,

00000066
Al 96000000
00600000,

06000000 \ !)ﬁ
B| 00000000 7
56606060, -
MUK (\H
sign

@a
IM—E =
; &
Op

GateControl

4.1 Implementation Details

The above circuit takes in two 32-bit data inputs (A and B) along with
Op, a four-bit code that determines which if any of the logical operations to
compute. Input A is routed in series through the 32-bit AND, XOR, and
OR gates. If Op corresponds with one of the correct op codes listed in the
able in section 2.1, it will apply that bitwise logical operation. Otherwise
it will simply pass the value of A through. This is done using a mux after
each of the gates. NOR is handled but activating the mux for OR and then
negating the resulting value though the use of a bit extender and 32-bit
XOR gate. The 32-bit result C represents the computation of one or none
of these bitwise logical operations.

5 Shift32

A Dbit shifter that can compute logical left shifts, logical right shifts, and
arithmetic right shifts between 0 and 31 bits.

0060006000 \ 0
Bl 00000000 | n C I@'
00000000, SwapBits32
00000000
I_ = = oooo0oo0no

Sa[00606,>— 00000000

Sa

oin
cin[6> LeftShift32

A c B!E
SwapBits32

sL[®> é
Shift32

00000000,

5.1 Implementation Details

This circuit takes in one 32-bit data input B, Sa the amount to shift in
range 0-31, Cyy, the bit (1 or 0) to fill in, and SL to determine if the shift is
left or right (0 = left, 1 = right. If SL is one I use a mux to swap the order
of B. I then left shift by the specified amount, Sa, and fill in the empty bits
with C;,. By swapping these bits again we can use LeftShift32 to do the
work of a right shifter. If SL is zero the swaps do not happen, and in both

cases the shifted result is outputted in C. Sa is split into its components,
each of which controls a mux to shift B the corresponding amount of bits,
which together can handle and shift of 0-31 bits.

5.2 LeftShift32

This circuit was designed in a similar way as Add32. It uses multiple
recursive subcircuits, ShiftLeft16 through ShiftLeft2 (example of one below,
all follow the same pattern). These circuits are built off of ShiftLeft1, which
is also shown below. ShiftLeftl works by using a splitter to section off the
first 31 bits which are passed to the output C, and fills in the remaining bit
with the value of Cj,.

oooooDoDDO

00000060 , B EEELLELY
Bl 66060000 = — 20000000
00000000. - - 0ooooooo,

f I 0

cin[0.>

LeftShift32

olololololololo O0000000
000006000 00000000 c
000000060 00000000
00000000 00000000
Cin
ShiftLeft16
00000000
B 00006006060 = = 00000000
0006006060600 cin 00000000
@@OOO@@O 00000000
I- B c
Cin 0. Cin
ShiftLeft1

5.3 SwapBits32

This circuit exists simply to swap the order of the 32 bits, 0 to 31, 1 to
30, and so on. It is used to reduce clutter, as the 32-bit splitters are quite
large.

i N EEEEEEEE = — —I—1—=1—01=T0Ch: I~ 00 B R B =)
= L= [55) o) [(] 15 [0] B (=) s -1 e o g — R

——=— — —l— l — s s e s Beo Bes B feolesliea o, o

L. - A -l Ao B e Bl o Dol ol B B B Bl i e s =

OR0LOLOA0R 000 pooooooaO
00000000 A | cooooooo
Al 60600000 00000000
00000000, 00000000,

SwapBits32

6 ComparisonControl

The circuit below handles the equal too, not equal too, less than or
equal too, and greater than comparisons.

10

50000000
00000000
Al 90000000
00000000

00000000
00000000
-

00000000
00000000

le

EEL:
op ==

ComparisonControl

-

6.1 Implementation Details

ComparisonControl takes in two 32-bit data inputs, A and B, and an
op code Op. Like in previous cases, it uses multiple mux’s to apply or not
apply an operation. The output C' is the single 32-bit result of one or none
of the following computations, all of which are shown below. Note that for

less than or greater too and greater than the comparison is between A and
0, not A and B like in the other cases.

00000000
00000000,

eq

060000000
Al 00000000
00000000,

060000000
Bl 00000000
00000000,

ne

00000000
0oo0o00O0O

1
exteﬁa

0oo0O0O0O0OD
00000001

00000000
00000000

1
exteﬁa

06000000
Al 90000000
00000000,

le

12

0ooono0O0O0
00000000

00000000
00000000
00000000

00000001

00000000
Al 00000000

7 ALU

00000000

3
extend

gt

00000000
00000000
00000000
00000000,

Now we can finally consider the ALU. Many parts of the design will now
feel familiar. The purpose of the ALU is to compute one of the operations
listed in the table in section 2.1 based on a corresponding op code.

00000000 \

Al pooo0000
09900009,
66908000 \

1>

[—

B[00000000
$9000999,

sa[00000, >

oz =Jo
B v
Cin
Add32
I_ A [o}
B
Cp
B Cin e
Op SL [y

Shiftind

oooooooo
oooooooo
oooooooo

00000000,

ShiftControl

IA’TIT

B [
Sa
et Cin
bt S|
Shift32
L= G
B
Op
ComparisonControl

7.1 Implementation Details

ALU takes in two 32-bit data inputs, A and B, Sa an amount to shift
in range 0-31, and Op a four-bit code to determine which operations to run.

13

Addition and subtraction trigger the same mux to tell the circuit to use the
output of Add32. Subtraction is differentiated from addition by passing in
1 for Cyy, (the effect of which is discussed in section 3.1. Op is passed into
GateControl and ComparisonControl to allow them to make the correspond-
ing computations when necessary. It is also passed into ShiftControl, which
is a helper circuit for Shift32 which will be explained separately below. Since
shifting is applied to B instead of A, we have a mux to choose between A
when 0 and B when 1 , which occurs if and only if a shift has taken place
(represented with Shiftind = 1). The desired computation is displayed in
the output C.

7.2 ShiftControl

ShiftControl is a helper used to send the correct inputs into Shift32. If
the op code for left logical shift (1tLog) is present we pass 0 as Cj,, and SL
= 0. For right logical shift Cj, is 0 and SL is 1. For right arithmetic shift

C;n matches the most significant bit of B, and SL is 1. All of this
behaviour is per definition of the corresponding shifts. In the case that any

of the three shifts occur, ShiftInd is set to 1.

—_DLP _

Bl 90000000
00000000,

00000000
uwod-{ >Cin

| 0.>Shiftind

ShiftControl

